Section 2.2

Connectivity

IDEA OF DEPTH-FIRST SEARCH

- Select vertex v_0 and visit any vertex adjacent to v_0 , say v_1 .
- Next visit a vertex adjacent to v_1 that has not been visited.
- Continue until a vertex v_k is reached with the property that all of its neighbors have been visited.
- Backtrack to the last vertex visited prior to v_k, say v_{k-1} and visit any new vertices neighboring it. If none exist, backtrack until we find a vertex with unreached neighbors.
- When we backtrack to v_0 and find it has no unvisited neighbors, we have visited all possible vertices reachable from v_0 .

PROPERTIES OF DFS

- The set of edges formed are the edges of a tree.
- If the graph still has vertices that are unvisited, we can choose one of the vertices and start the DFS again. (If this happens, the graph is disconnected.)
- When all vertices have been visited, the edges used in performing these visit are the edges of a forest.

DFS PARTITIONS EDGES

- The DFS algorithm partitions the edge set into two sets *T* (those edges contained in the forest) called <u>tree edges</u>. The remaining edges B = E T are called <u>back edges</u>.
- The set *B* can be partitioned further when applying DFS to a digraph:
 - B₁ is the set of back arcs that join two vertices y and x where e = y → x along some path from v₀ to y in the DFS tree that begins with v₀.
 - *F* is the set of forward arcs that join two vertices *x* and *y* where *e* = *x* → *y* along some path from *v*₀ to *y* in the DFS tree that begins with *v*₀.
 - *C* is the set of arcs in *B* that join two vertices joined by a unique tree path that contains v₀. The edges of *C* are called <u>cross edges</u>, since they are edges between vertices that are not descendants of one another in the DFS tree.

NUMBERING VERTICES IN DFS

While performing a DFS, we shall number the vertices v with an integer n(v) which represents the order in which the vertices are first encountered during the search.

DEPTH-FIRST SEARCH ALGORITHM

Algorithm 2.2.1 Depth-First Search (DFS).

- **Input:** A graph G = (V, E) with distinguished vertex *x*.
- **Output:** A set *T* of tree edges and an ordering n(v) of the vertices.
- **Method:** Use a label m(e) to determine if an edge has been examined Use p(v) to record the previous vertex to v in a search.

DFS (CONCLUDED)

- 1. For each $e \in E$, do the following: Set $m(e) \leftarrow$ "unused." Set $T \leftarrow \emptyset$, $i \leftarrow 0$. For every $v \in V$, do the following: Set $n(v) \leftarrow 0$.
- 2. Let $v \leftarrow x$.
- 3. Let $i \leftarrow i + 1$ and let $n(v) \leftarrow i$.
- 4. If v has no unused incident edges, then go to step 6.
- 5 Find an unused edge e = uv and set $m(e) \leftarrow$ "used." Set $T \leftarrow T \cup \{e\}$. If $n(u) \neq 0$, then go to step 4;

else $p(u) \leftarrow v, v \leftarrow u$ and go to step 3

6. If n(v) = 1, then halt; else $v \leftarrow p(v)$ and go to step 4.

RECURSIVE VERSION OF DFS

Algorithm 2.2.2 Recursive Version of Depth-First Search.

Input: A graph G = (V, E) with starting vertex *x*.

- **Output:** A set *T* of tree edges and an ordering n(v) of the vertices.
- 1. Let $i \leftarrow 1$ and let $T \leftarrow \emptyset$. For all $v \in V$, do the following: Set $n(v) \leftarrow 0$.
- 2. While for some $u \in V$, n(u) = 0, do the following: DFS(u).
- 3. Output T.

PROCEDURE DFS

Procdure DFS(*v*)

- 1. Let $n(v) \leftarrow i$ and $i \leftarrow i + 1$.
- 2. For all $y \in N(v)$, do the following: if n(y) = 0, then $T \leftarrow T \cup \{e = yv\}$ DFS(y) end DFS

CONNECTIVITY

- The <u>connectivity</u> of *G*, denoted by *k*(*G*), is the minimum number of vertices whose removal disconnects *G* or reduces it to a single vertex *K*₁.
- The <u>edge connectivity</u> of *G*, denoted by *k*₁(*G*), is the minimum number of edges whose removal disconnects *G*.
- The graph *G* is <u>*n*-connected</u> if $k(G) \ge n$ and is <u>*n*-edge connected</u> if $k_1(G) \ge n$.

SEPARATING SETS

- A set of vertices whose removal increases the number of components in a graph is called a <u>vertex separating set</u> (or <u>vertex cut set</u>). If the cut set consists of a single vertex, it is a called <u>cut vertex</u>.
- A set of edges whose removal increases the number of components in a graph is called a <u>edge separating set</u> (or <u>edge cut set</u>). If the cut set consists of a single edge, it is a called <u>cut edge</u> or a <u>bridge</u>.

BLOCKS

A **block** of a graph *G* is a maximal 2-connected subgraph; that is, a 2-connected subgraph *H* of *G* that is not a proper subgraph of any other 2-connected subgraph of *G*.

A THEOREM ON CUT VERTICES AND BRIDGES

<u>Theorem 2.2.1</u>: In a connected graph *G*:

- 1. A vertex v is a cut vertex if and only if there exists vertices u and w $(u, w \neq v)$ such that v is on every u w path of G.
- A edge *e* is a bridge if and only if there exists vertices *u* and *w* such that *e* is on every *u* − *w* path of *G*.

A RELATIONSHIP BETWEEN CONNECTIVITY AND EDGE CONNECTIVITY

<u>Theorem 2.2.2</u>: For any graph *G*,

 $k(G) \le k_1(G) \le \delta(G).$

A CHARACTERIZATION OF BRIDGES

Theorem 2.2.3: In a graph *G*, the edge *e* is a bridge if and only if *e* lies on no cycle of *G*.

INTERNALLY DISJOINT PATHS

Two u - v paths P_1 and P_2 are **internally disjoint** if

 $V(P_1)\cap V(P_2)=\{u,v\}.$

A CHARACTERIZATION OF 2-CONNECTED GRAPHS

Theorem 2.2.4 (Whitney): A graph *G* of order $p \ge 3$ is 2-connected if and only if any two vertices of *G* lie on a common cycle.

MENGER'S THEOREM

Theorem 2.2.5 (Menger's Theorem): For nonadjacent vertices u and v in a graph G, the maximum number of internally disjoint u - v paths equals the minimum number of vertices that separate u and v.

A GENERALIZATION OF WHITNEY'S THEOREM

Theorem 2.2.6: A graph is *k*-connected if and only if all distinct pairs of vertices are joined by at least *k* internally disjoint paths.

AN EDGE ANALOG TO MENGER'S THEOREM

Theorem 2.2.7: For any two vertices *u* and *v* of a graph *G*, the maximum number of edge disjoint paths joining *u* and *v* equals the minimum number of edges whose removal separates *u* and *v*.