
8/28/2015

1

Section 2.1

Distance

WEIGHTED EDGES

Many	times	in	graphs	modeling	physical	
situations	we	label	each	edge	with	nonnegative	
number	called	a	weight.		Such	weights	might	
represent	the	physical	distance	between	two	
vertices,	the	time	it	takes	to	travel	between	two	
vertices,	etc.	

If	a	graph	has	edges	with	no	labels,	we	can	
consider	all	the	weights	to	be	one.

LENGTH AND DISTANCE

• In	a	graph	with	weighted	edges,	the	length	
of	a	path is	the	sum	of	the	lengths	of	the	
edges	in	the	path.

• Let	ݔ and	ݕ be	vertices	of	a	graph.		The	
distance	from	x to	y,	denoted	݀ ,ݔ ݕ ,	is	the	
minimum	length	of	an	ݔ െ ݕ path	in	the	
graph.



8/28/2015

2

METRIC FUNCTION

Let	݂ be	a	function	on	a	set	of	objects	ܵ.		Let	
,ݔ ݕ ∈ ܵ.		The	function	݂ is	a	metric	function
(or	simply	a	metric)	if	it	satisfies	the	
following	properties.

1. ݂ ,ݔ ݕ ൒ 0 and	݂ ,ݔ ݕ ൌ 0 if	and	only	if	
ݔ ൌ .ݕ

2. ݂ ,ݔ ݕ ൌ ݂ሺݕ, ሻݔ [Symmetric	Property]

3. ݂ ,ݔ ݕ ൅ ݂ ,ݕ ݖ ൒ ݂ሺݔ, ሻݖ [Triangle	
inequality]

DISTANCE IS A METRIC

As	defined	previously,	the	distance	between	
two	vertices	in	a	graph	is	a	metric	function.

DIAMETER AND RADIUS
• The	diameter,	denoted	݀݅ܽ݉ ܩ ,	of	a	connected	graph	ܩ

equals

max
௨∈௏

max
௩∈௏

݀ ,ݑ ݒ

In	other	words,	let	ܵ ൌ
ሼdistance	between	ݒ	and	the	vertex	farthest	from	ݒ ∶ ݒ ∈
ܸ ܩ ሽ,	the	diameter	is	the	maximum	of	ܵ.

• The	radius,	denoted	݀ܽݎ ܩ ,	of	a	connected	graph	ܩ equals

min
௨∈௏

max
௩∈௏

݀ ,ݑ ݒ

In	other	words,	the	radius	in	the	minimum	of	ܵ.



8/28/2015

3

RELATIONSHIP BETWEEN RADIUS AND 
DIAMETER

Theorem	2.1.1: For	any	connected	graph	ܩ,

݀ܽݎ ܩ ൑ ݀݅ܽ݉ ܩ ൑ ݀ܽݎ	2 ܩ 	.

ISOMETRIC FROM

A	connected	graph	ܪ is	isometric	from	a	
connected	graph	ܩ if	for	each	vertex	ݔ in	ܩ,	
there	is	a	1‐1	and	onto	function	ܨ௫: ܸ ܩ → ܸ ܪ
that	preserves	distances	from	ݔ,	that	is	
݀ீ ,ݔ ݕ ൌ ݀ு ௫ܨ ݔ , ௫ܨ ݕ .

THEOREM ON ISOMETRIC FROM

Theorem	2.1.2: The	relation	isometric	from	
is	not	symmetric;	that	is,	if	ܩଶ is	isometric	
from	ܩଵ,	then	ܩଵ need	not	be	isometric	from	
.ଶܩ



8/28/2015

4

BREADTH‐FIRST SEARCH ALGORITHM 
FOR UNLABELED GRAPHS

Algorithm	2.1.1		Breadth‐First	Search	(BFS).

Input: An	unlabeled	graph	ܩ ൌ ܸ, ܧ with	distinguished	
vertex	ݔ.

Output: The	distances	from	ݔ to	all	vertices	reachable	from	ݔ.

Method: Use	variable	݅ to	measure	the	distance	from	ݔ,	and	
label	vertices	with	݅ as	their	distance	is	found.

BFS (CONCLUDED)

1. ݅ ← 0.

2. Label	ݔ with	“݅.”

3. Find	all	unlabeled	vertices	adjacent	to	at	
least	one	vertex	with	label	݅.		If	none	is	
found,	stop	because	we	have	reached	all	
possible	vertices.

4. Label	all	vertices	found	in	step	3	with	݅ ൅ 1.

5. Let	݅ ← ݅ ൅ 1,	and	go	to	step	3.

PROPERTIES OF THE BFS ALGORITHM

• The	BFS algorithm	produces	a	search	tree,	
using	some	edge	to	reach	each	new	vertex	
along	a	path	from	ݔ.

• Using	incidence	lists	for	the	data,	the	BFS
algorithm	has	time	complexity	ܱ ܧ .

• To	find	distances	between	any	two	vertices	
in	a	graph,	we	perform	the	BFS algorithm	
starting	at	each	vertex.		Thus,	to	find	all	
distances,	the	algorithm	has	time	
complexity	ܱ ܸ ܧ .



8/28/2015

5

THEOREM ON BFS

Theorem	2.1.3: When	the	BFS	algorithm	
halts,	each	vertex	reachable	from	ݔ is	labeled	
with	its	distance	from	ݔ.

DISTANCES IN DIGRAPHS
• The	arcs	of	the	digraph	are	labeled	with	a	weight	݈ ݁ .		

• To	determine	the	shortest	path	from	ݒ to	ݑ,	we	need	
information	about	the	distances	to	intermediate	
vertices.		We	do	this	by	labeling	the	intermediate	
vertices.

• This	takes	one	of	two	forms:

• The	distance	݀ ,ݑ ݓ between	ݑ and	the	
intermediate	vertex	ݓ.

• The	pair	݀ ,ݑ ݓ and	the	predecessor	of	ݓ on	this	
path,	݀݁ݎ݌ ݓ .		The	predecessor	aids	in	
backtracking	to	find	the	path.

TWO TYPES OF ALGORITHMS FOR 
DISTANCES IN DIGRAPHS

• In	label‐setting algorithms,	during	each	
pass	through	the	algorithm,	one	vertex	label	
is	assigned	a	value	which	remains	
unchanged	thereafter.

• In	label‐correcting algorithms,	any	label	
may	be	changed	during	the	process.



8/28/2015

6

DIJKSTRA’S DISTANCE ALGORITHM
Algorithm	2.1.2	Dijkstra’s Distance	Algorithm

Input: A	labeled	digraph	ܦ ൌ ܸ, ܧ with	initial	vertex	ݒଵ.

Output: The	distance	from	ݒଵ to	all	other	vertices.

Method: Label	each	vertex	ݒ with	 ܮ ݒ , ݀݁ݎ݌ ݒ ,	which	is	the	
length	of	a	shortest	path	from	ݒଵ to	ݒ that	has	been	found	at	
that	instant	and	the	predecessor	of	ݒ along	the	path.

1. For	all	ݒ ∈ ܸ ܦ and	for	all	ݒ ് ଵݒ set	ܮ ݒ ← ∞ and	ܥ ← ܸ.

2. While	ܥ ് ∅;
Find	ݒ ∈ ܥ with	minimum	label	ܮ ݒ .
ܥ ← ܥ െ ݒ
For	every	݁ ൌ ݒ → ,ݓ

if	ݓ ∈ ܥ and	ܮ ݓ ൐ ܮ ݒ ൅ ݈ሺ݁ሻ then
ܮ ݓ ← ܮ ݒ ൅ ݈ሺ݁ሻ and	݀݁ݎ݌ ݓ ൌ .ݒ

THEOREM ON DIJKSTRA’S
ALGORITHM

Theorem	2.1.4: If	ܮ ݒ is	finite	when	
Algorithm	2.1.2	halts,	then	݀ ,ݔ ݒ ൌ ܮ ݒ .

PROPERTIES OF DIJKSTRA’S
ALGORITHM

• Dijkstra’s	algorithm	is	label‐setting.
• The	algorithm	has	time	complexity	ܱ ܸ ଶ .
• To	find	distances	between	any	two	vertices	
in	a	graph,	we	perform	the	algorithm	
starting	at	each	vertex.		Thus,	to	find	all	
distances,	the	algorithm	has	time	
complexity	ܱ ܸ ଷ .

• Dijkstra’s algorithm	works	on	graphs	with	
arcs	replaced	by	edges.



8/28/2015

7

FAILURE OF DIJKSTRA’S ALGORITHM

• Disjkstra’s algorithm	can	fail	if	we	allow	
negative	edge	weights.

• There	are	algorithms	that	will	find	
distances	in	digraphs	when	the	digraph	
contains	no	cycles	whose	total	length	is	
negative	(called	a	negative	cycle).		These	
algorithms	are	those	of	Ford	and	Floyd.

FORD’S DISTANCE ALGORITHM
Algorithm	2.1.3	Ford’s	Distance	Algorithm

Input: A	digraph	with	(possibly)	negative	are	weights	ݓ ݁ ,	but	no	
negative	cycles.

Output: The	distance	from	ݔ to	all	vertices	reachable	from	ݔ.

Method: Label	correcting.

1. ܮ ݔ ← 0 and	for	every	ݒ ് ݔ set	ܮ ݒ ← ∞.

2. While	there	is	an	arc	݁ ൌ ݑ → ݒ such	that	ܮ ݒ ൐ ܮ ݑ ൅ ሺ݁ሻݓ
set	ܮ ݒ ← ܮ ݑ ൅ ሺ݁ሻݓ and	݀݁ݎ݌ ݒ ൌ .ݑ

COMMENTS ON FORD’S ALGORITHM

• Theorem	2.1.5: For	a	digraph	ܦ with	no	
negative	cycles,	when	Algorithm	2.1.3	halts,	
ܮ ݒ ൌ ݀ ,ݔ ݒ for	every	vertex	ݒ.

• The	time	complexity	of	Ford’s	Algorithm	is	
ܱ ܸ 	 ܧ .

• Ford’s	Algorithm	can	only	be	used	on	
digraphs.		In	graphs,	an	edge	݁ ൌ ݕݔ with	a	
negative	label	causes	an	endless	loop	using	
this	edge	to	continually	decrease	the	labels	
on	ݔ and	ݕ.



8/28/2015

8

A DEFINITION NEEDED FOR FLOYD’S 
ALGORITHM

For	݅ ് ݆,	define

݀଴ ,௜ݒ ௝ݒ ൌ ቊ
݈ሺ݁ሻ if	ݒଵ → ௝ݒ
∞ otherwise

Let	݀௞ ,௜ݒ ௝ݒ be	the	length	of	the	shortest	
path	from	ݒ௜ to	ݒ௝ among	all	paths	from	ݒ௜ to	
௝ݒ that	use	only	vertices	from	the	set	
,ଵݒ ,ଶݒ … , ௞ݒ .

FLOYD’S DISTANCE ALGORITHM
Algorithm	2.1.4	Floyd’s	Distance	Algorithm

Input: A	digraph	ܦ ൌ ܸ, ܧ without	negative	cycles.

Output: The	distances	from	ݒ௜ to	ݒ௝.

Method: Constant	refinement	of	the	distances	as	the	set	of	excluded	
vertices	decreases.

1. ݇ ← 1.

2. For	every	1 ൑ ݅, ݆ ൑ ݊,
݀௞ ,ଵݒ ௝ݒ ← min ݀௞ିଵ ,௜ݒ ௝ݒ , ݀௞ିଵ ,௜ݒ ௞ݒ ൅ ݀௞ିଵ ,௞ݒ ௝ݒ .

3. If	݇ ൌ ܸ ,	then	stop;
else	݇ ← ݇ ൅ 1 and	go	to	step	2.

TIME COMPLEXITY OF FLOYD’S 
ALGORITHM

The	time	complexity	of	Floyd’s	Algorithm	is	
ܱ ܸ ଷ .


