Section 2.1

Distance

8/28/2015

WEIGHTED EDGES

Many times in graphs modeling physical
situations we label each edge with nonnegative
number called a weight. Such weights might
represent the physical distance between two
vertices, the time it takes to travel between two
vertices, etc.

If a graph has edges with no labels, we can
consider all the weights to be one.

LENGTH AND DISTANCE

* In a graph with weighted edges, the length
of a path is the sum of the lengths of the
edges in the path.

* Letx and y be vertices of a graph. The
distance from x to y, denoted d(x, y), is the
minimum length of an x — y path in the
graph.

METRIC FUNCTION

Let f be a function on a set of objects S. Let
x,y € S. The function f is a metric function
(or simply a metric) if it satisfies the
following properties.

1. f(x,y) =0 and f(x,y) = 0 if and only if
x=y.
2. f(x,y) = f(y,x) [Symmetric Property]

3. f,y)+ f(y,2) = f(x,z) [Triangle
inequality]

8/28/2015

DISTANCE IS A METRIC

As defined previously, the distance between
two vertices in a graph is a metric function.

DIAMETER AND RADIUS

The diameter, denoted diam(G), of a connected graph G
equals

max max d (u, v)
UEV vev

In other words, let § =
{distance between v and the vertex farthest fromv : v €
V(G)}, the diameter is the maximum of S.

The radius, denoted rad(G), of a connected graph G equals

min max d(u, v)
uUev vev

In other words, the radius in the minimum of S.

RELATIONSHIP BETWEEN RADIUS AND
DIAMETER

Theorem 2.1.1: For any connected graph G,
rad(G) < diam(G) < 2 rad(G).

8/28/2015

ISOMETRIC FROM

A connected graph H is isometric from a
connected graph G if for each vertex x in G,
there is a 1-1 and onto function F,: V(G) — V(H)
that preserves distances from x, that is

de(x,y) = dH(Fx(x): Fx(}’))-

THEOREM ON ISOMETRIC FROM

Theorem 2.1.2: The relation isometric from
is not symmetric; that is, if G, is isometric
from G4, then G; need not be isometric from
G,.

BREADTH-FIRST SEARCH ALGORITHM
FOR UNLABELED GRAPHS

Algorithm 2.1.1 Breadth-First Search (BFS).

Input: An unlabeled graph G = (V, E) with distinguished
vertex x.

Output: The distances from x to all vertices reachable from x.

Method: Use variable i to measure the distance from x, and
label vertices with i as their distance is found.

8/28/2015

BFS (CONCLUDED)

. i<0.
. Label x with “i.”

. Find all unlabeled vertices adjacent to at
least one vertex with label i. If none is
found, stop because we have reached all
possible vertices.

. Label all vertices found in step 3 with i + 1.

. Leti « i+ 1, and go to step 3.

PROPERTIES OF THE BFS ALGORITHM

» The BFS algorithm produces a search tree
using some edge to reach each new vertex
along a path from x.

Using incidence lists for the data, the BFS
algorithm has time complexity O(|E|).

To find distances between any two vertices
in a graph, we perform the BFS algorithm
starting at each vertex. Thus, to find all
distances, the algorithm has time
complexity O(|V]|E|).

8/28/2015

THEOREM ON BFS

Theorem 2.1.3: When the BFS algorithm
halts, each vertex reachable from x is labeled
with its distance from x.

DISTANCES IN DIGRAPHS

The arcs of the digraph are labeled with a weight [(e).

To determine the shortest path from v to u, we need
information about the distances to intermediate
vertices. We do this by labeling the intermediate
vertices.

This takes one of two forms:

* The distance d(u, w) between u and the
intermediate vertex w.

¢ The pair d(u, w) and the predecessor of w on this
path, pred(w). The predecessor aids in
backtracking to find the path.

TWO TYPES OF ALGORITHMS FOR
DISTANCES IN DIGRAPHS

¢ Inlabel-setting algorithms, during each
pass through the algorithm, one vertex label
is assigned a value which remains
unchanged thereafter.

* Inlabel-correcting algorithms, any label
may be changed during the process.

DIJKSTRA'S DISTANCE ALGORITHM

Algorithm 2.1.2 Dijkstra’s Distance Algorithm
Input: Alabeled digraph D = (V, E) with initial vertex v;.
Output: The distance from v, to all other vertices.

Method: Label each vertex v with (L), pred(v)), which is the
length of a shortest path from v; to v that has been found at
that instant and the predecessor of v along the path.

1. Forallv € V(D) and forallv # v; set L(v) « coand C « V.

2. While C # ¢;
Find v € € with minimum label L(v).
CeC—{v}
Foreverye=v - w,
ifw € C and L(w) > L(v) + l(e) then
L(w) < L(v) + l(e) and pred(w) = v.

8/28/2015

THEOREM ON DIJKSTRA’S
ALGORITHM

Theorem 2.1.4: If L(v) is finite when
Algorithm 2.1.2 halts, then d(x, v) = L(v).

PROPERTIES OF DIJKSTRA’S
ALGORITHM

* Dijkstra’s algorithm is label-setting.
* The algorithm has time complexity 0 (|V|?).

* To find distances between any two vertices
in a graph, we perform the algorithm
starting at each vertex. Thus, to find all
distances, the algorithm has time
complexity O(|V[3).

* Dijkstra’s algorithm works on graphs with
arcs replaced by edges.

FAILURE OF DIJKSTRA’S ALGORITHM

» Disjkstra’s algorithm can fail if we allow

negative edge weights.

There are algorithms that will find
distances in digraphs when the digraph
contains no cycles whose total length is
negative (called a negative cycle). These
algorithms are those of Ford and Floyd.

8/28/2015

FORD’S DISTANCE ALGORITHM

Algorithm 2.1.3 Ford’s Distance Algorithm

Input:

negative cycles.

Output: The distance from x to all vertices reachable from x.

Method: Label correcting.

1.
2.

L(x) « 0 and for every v # x set L(v) « oo.

While there is an arc e = u - v such that L(v) > L(u) + w(e)
set L(v) « L(u) +w(e) and pred(v) = u.

A digraph with (possibly) negative are weights w(e), but no

COMMENTS ON FORD’S ALGORITHM

e Theorem 2.1.5: For a digraph D with no
negative cycles, when Algorithm 2.1.3 halts,

L(v) = d(x,v) for every vertex v.

The time complexity of Ford’s Algorithm is
O(IVI ED.

Ford’s Algorithm can only be used on
digraphs. In graphs, an edge e = xy with a
negative label causes an endless loop using
this edge to continually decrease the labels
on x and y.

A DEFINITION NEEDED FOR FLOYD’S
ALGORITHM

For i # j, define

do(w,vj) = {l(e) G _>.vj
o otherwise
Let d*(v;, v;) be the length of the shortest
path from v; to v; among all paths from v; to
v; that use only vertices from the set

{vi, v, ., v}

8/28/2015

FLOYD’S DISTANCE ALGORITHM

Algorithm 2.1.4 Floyd’s Distance Algorithm
Input: A digraph D = (V, E) without negative cycles.
Output: The distances from v; to v;.

Method: Constant refinement of the distances as the set of excluded
vertices decreases.

1. kel
2. Foreveryl<i,j<n,
@(01,13) © i (31, 7). €7 (o) + 5 (03],

3. Ifk = |V|, then stop;
else k « k + 1 and go to step 2.

TIME COMPLEXITY OF FLOYD’S
ALGORITHM

The time complexity of Floyd’s Algorithm is
o(vIR).

