
\qquad
\qquad

WEIGHTED EDGES

\qquad
Many times in graphs modeling physical situations we label each edge with nonnegative number called a weight. Such weights might
\qquad represent the physical distance between two vertices, the time it takes to travel between two \qquad vertices, etc.

If a graph has edges with no labels, we can \qquad consider all the weights to be one.

LENGTH AND DISTANCE

- In a graph with weighted edges, the length \qquad of a path is the sum of the lengths of the edges in the path.
- Let x and y be vertices of a graph. The distance from x to y denoted $d(x, y)$, is the minimum length of an $x-y$ path in the graph.
\qquad
\qquad
\qquad
\qquad
\qquad

METRIC FUNCTION

Let f be a function on a set of objects S. Let $x, y \in S$. The function f is a metric function (or simply a metric) if it satisfies the following properties.

1. $f(x, y) \geq 0$ and $f(x, y)=0$ if and only if $x=y$.
2. $f(x, y)=f(y, x)$ [Symmetric Property]
3. $f(x, y)+f(y, z) \geq f(x, z)$ [Triangle inequality]

DISTANCE IS A METRIC

As defined previously, the distance between two vertices in a graph is a metric function.

DIAMETER AND RADIUS

- The diameter, denoted $\operatorname{diam}(G)$, of a connected graph G equals
$\max _{u \in V} \max _{v \in V} d(u, v)$

In other words, let $S=$
\{distance between v and the vertex farthest from $v: v \in$ $V(G)\}$, the diameter is the maximum of S.

- The radius, denoted $\operatorname{rad}(G)$, of a connected graph G equals

$$
\min _{u \in V} \max _{v \in V} d(u, v)
$$

In other words, the radius in the minimum of S.
D|AMETER AND RAD|US
The diameter, denoted diam (G), of a connected graph G
equals
$\max _{u \in V} \max _{v \in V} d(u, v)$
In other words, let $S=$
\{distance between v and the vertex farthest from $v: v \in$
$V(G)\}$, the diameter is the maximum of S.
The radius, denoted $\operatorname{rad}(G)$, of a connected graph G equals
$\min _{u \in V} \max _{v \in V} d(u, v)$
In other words, the radius in the minimum of S.
\qquad

RELATIONSHIP BETWEEN RADIUS AND DIAMETER

Theorem 2.1.1: For any connected graph G,

$$
\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ISOMETRIC FROM

\qquad
A connected graph H is isometric from a \qquad connected graph G if for each vertex x in G, there is a 1-1 and onto function $F_{x}: V(G) \rightarrow V(H)$ \qquad that preserves distances from x, that is $d_{G}(x, y)=d_{H}\left(F_{x}(x), F_{x}(y)\right)$.

THEOREM ON ISOMETRIC FROM

Theorem 2.1.2: The relation isometric from \qquad is not symmetric; that is, if G_{2} is isometric from G_{1}, then G_{1} need not be isometric from \qquad G_{2}.

BREADTH-FIRST SEARCH ALGORITHM FOR UNLABELED GRAPHS

Algorithm 2.1.1 Breadth-First Search (BFS).
Input: An unlabeled graph $G=(V, E)$ with distinguished vertex x.

Output: The distances from x to all vertices reachable from x.
Method: Use variable i to measure the distance from x, and label vertices with i as their distance is found.

BFS (CONCLUDED)

1. $i \leftarrow 0$.
2. Label x with " i."
3. Find all unlabeled vertices adjacent to at least one vertex with label i. If none is found, stop because we have reached all possible vertices.
4. Label all vertices found in step 3 with $i+1$.
5. Let $i \leftarrow i+1$, and go to step 3 .

PROPERTIES OF THE BFS ALGORITHM

- The BFS algorithm produces a search tree, using some edge to reach each new vertex along a path from x.
- Using incidence lists for the data, the BFS algorithm has time complexity $O(|E|)$.
- To find distances between any two vertices in a graph, we perform the BFS algorithm starting at each vertex. Thus, to find all distances, the algorithm has time complexity $O(|V||E|)$.
\qquad

THEOREM ON BFS

Theorem 2.1.3: When the BFS algorithm halts, each vertex reachable from x is labeled with its distance from x.

DISTANCES IN DIGRAPHS

- The arcs of the digraph are labeled with a weight $l(e)$.
- To determine the shortest path from v to u, we need information about the distances to intermediate vertices. We do this by labeling the intermediate vertices.
- This takes one of two forms:
- The distance $d(u, w)$ between u and the intermediate vertex w.
- The pair $d(u, w)$ and the predecessor of w on this path, $\operatorname{pred}(w)$. The predecessor aids in backtracking to find the path.

TWO TYPES OF ALGORITHMS FOR DISTANCES IN DIGRAPHS

- In label-setting algorithms, during each pass through the algorithm, one vertex label is assigned a value which remains unchanged thereafter.
- In label-correcting algorithms, any label may be changed during the process.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DIJKSTRA'S DISTANCE ALGORITHM

Algorithm 2.1.2 Dijkstra's Distance Algorithm
Input: A labeled digraph $D=(V, E)$ with initial vertex v_{1}.
Output: The distance from v_{1} to all other vertices.
Method: Label each vertex v with $(L(v), \operatorname{pred}(v))$, which is the length of a shortest path from v_{1} to v that has been found at that instant and the predecessor of v along the path.

1. For all $v \in V(D)$ and for all $v \neq v_{1}$ set $L(v) \leftarrow \infty$ and $C \leftarrow V$.
2. While $C \neq \varnothing$;

Find $v \in C$ with minimum label $L(v)$.
$C \leftarrow C-\{v\}$
For every $e=v \rightarrow w$,
if $w \in C$ and $L(w)>L(v)+l(e)$ then
$L(w) \leftarrow L(v)+l(e)$ and $\operatorname{pred}(w)=v$.

THEOREM ON DIJKSTRA'S ALGORITHM

Theorem 2.1.4: If $L(v)$ is finite when Algorithm 2.1.2 halts, then $d(x, v)=L(v)$.

PROPERTIES OF DIJKSTRA'S ALGORITHM

- Dijkstra's algorithm is label-setting.
- The algorithm has time complexity $O\left(|V|^{2}\right)$.
- To find distances between any two vertices in a graph, we perform the algorithm starting at each vertex. Thus, to find all distances, the algorithm has time complexity $O\left(|V|^{3}\right)$.
- Dijkstra's algorithm works on graphs with arcs replaced by edges.

FAILURE OF DIJKSTRA'S ALGORITHM

\qquad

- Disjkstra's algorithm can fail if we allow negative edge weights.
- There are algorithms that will find distances in digraphs when the digraph contains no cycles whose total length is negative (called a negative cycle). These algorithms are those of Ford and Floyd.

FORD'S DISTANCE ALGORITHM

\qquad
Algorithm 2.1.3 Ford's Distance Algorithm
Input: A digraph with (possibly) negative are weights $w(e)$, but no
\qquad negative cycles.

Output: The distance from x to all vertices reachable from x. \qquad
Method: Label correcting.

1. $\quad L(x) \leftarrow 0$ and for every $v \neq x$ set $L(v) \leftarrow \infty$.
2. While there is an arc $e=u \rightarrow v$ such that $L(v)>L(u)+w(e)$ set $L(v) \leftarrow L(u)+w(e)$ and $\operatorname{pred}(v)=u$.

COMMENTS ON FORD'S ALGORITHM

- Theorem 2.1.5: For a digraph D with no negative cycles, when Algorithm 2.1.3 halts, $L(v)=d(x, v)$ for every vertex v.
- The time complexity of Ford's Algorithm is $O(|V||E|)$.
- Ford's Algorithm can only be used on digraphs. In graphs, an edge $e=x y$ with a negative label causes an endless loop using this edge to continually decrease the labels on x and y.

A DEFINITION NEEDED FOR FLOYD'S ALGORITHM

For $i \neq j$, define

$$
d^{0}\left(v_{i}, v_{j}\right)=\left\{\begin{array}{cl}
l(e) & \text { if } v_{1} \rightarrow v_{j} \\
\infty & \text { otherwise }
\end{array}\right.
$$

Let $d^{k}\left(v_{i}, v_{j}\right)$ be the length of the shortest path from v_{i} to v_{j} among all paths from v_{i} to v_{j} that use only vertices from the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FLOYD'S DISTANCE ALGORITHM

\qquad
Algorithm 2.1.4 Floyd's Distance Algorithm
Input: A digraph $D=(V, E)$ without negative cycles.
Output: The distances from v_{i} to v_{j}.
Method: Constant refinement of the distances as the set of excluded vertices decreases.

1. $k \leftarrow 1$.
2. For every $1 \leq i, j \leq n$,
$d^{k}\left(v_{1}, v_{j}\right) \leftarrow \min \left\{d^{k-1}\left(v_{i}, v_{j}\right), d^{k-1}\left(v_{i}, v_{k}\right)+d^{k-1}\left(v_{k}, v_{j}\right)\right\}$.
3. If $k=|V|$, then stop;
else $k \leftarrow k+1$ and go to step 2 .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TIME COMPLEXITY OF FLOYD'S ALGORITHM

The time complexity of Floyd's Algorithm is $O\left(|V|^{3}\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

