
8/28/2015

1

Section 2.1

Distance

WEIGHTED EDGES

Many	times	in	graphs	modeling	physical	
situations	we	label	each	edge	with	nonnegative	
number	called	a	weight.		Such	weights	might	
represent	the	physical	distance	between	two	
vertices,	the	time	it	takes	to	travel	between	two	
vertices,	etc.	

If	a	graph	has	edges	with	no	labels,	we	can	
consider	all	the	weights	to	be	one.

LENGTH AND DISTANCE

• In	a	graph	with	weighted	edges,	the	length	
of	a	path is	the	sum	of	the	lengths	of	the	
edges	in	the	path.

• Let	 and	 be	vertices	of	a	graph.		The	
distance	from	x to	y,	denoted	 , ,	is	the	
minimum	length	of	an	 path	in	the	
graph.



8/28/2015

2

METRIC FUNCTION

Let	 be	a	function	on	a	set	of	objects	 .		Let	
, ∈ .		The	function	 is	a	metric	function
(or	simply	a	metric)	if	it	satisfies	the	
following	properties.

1. , 0 and	 , 0 if	and	only	if	
.

2. , , [Symmetric	Property]

3. , , , [Triangle	
inequality]

DISTANCE IS A METRIC

As	defined	previously,	the	distance	between	
two	vertices	in	a	graph	is	a	metric	function.

DIAMETER AND RADIUS
• The	diameter,	denoted	 ,	of	a	connected	graph	

equals

max
∈

max
∈

,

In	other	words,	let	
distance	between	 	and	the	vertex	farthest	from	 ∶ ∈

,	the	diameter	is	the	maximum	of	 .

• The	radius,	denoted	 ,	of	a	connected	graph	 equals

min
∈
max
∈

,

In	other	words,	the	radius	in	the	minimum	of	 .



8/28/2015

3

RELATIONSHIP BETWEEN RADIUS AND 
DIAMETER

Theorem	2.1.1: For	any	connected	graph	 ,

2	 	.

ISOMETRIC FROM

A	connected	graph	 is	isometric	from	a	
connected	graph	 if	for	each	vertex	 in	 ,	
there	is	a	1‐1	and	onto	function	 : →
that	preserves	distances	from	 ,	that	is	

, , .

THEOREM ON ISOMETRIC FROM

Theorem	2.1.2: The	relation	isometric	from	
is	not	symmetric;	that	is,	if	 is	isometric	
from	 ,	then	 need	not	be	isometric	from	
.



8/28/2015

4

BREADTH‐FIRST SEARCH ALGORITHM 
FOR UNLABELED GRAPHS

Algorithm	2.1.1		Breadth‐First	Search	(BFS).

Input: An	unlabeled	graph	 , with	distinguished	
vertex	 .

Output: The	distances	from	 to	all	vertices	reachable	from	 .

Method: Use	variable	 to	measure	the	distance	from	 ,	and	
label	vertices	with	 as	their	distance	is	found.

BFS (CONCLUDED)

1. ← 0.

2. Label	 with	“ .”

3. Find	all	unlabeled	vertices	adjacent	to	at	
least	one	vertex	with	label	 .		If	none	is	
found,	stop	because	we	have	reached	all	
possible	vertices.

4. Label	all	vertices	found	in	step	3	with	 1.

5. Let	 ← 1,	and	go	to	step	3.

PROPERTIES OF THE BFS ALGORITHM

• The	BFS algorithm	produces	a	search	tree,	
using	some	edge	to	reach	each	new	vertex	
along	a	path	from	 .

• Using	incidence	lists	for	the	data,	the	BFS
algorithm	has	time	complexity	 .

• To	find	distances	between	any	two	vertices	
in	a	graph,	we	perform	the	BFS algorithm	
starting	at	each	vertex.		Thus,	to	find	all	
distances,	the	algorithm	has	time	
complexity	 .



8/28/2015

5

THEOREM ON BFS

Theorem	2.1.3: When	the	BFS	algorithm	
halts,	each	vertex	reachable	from	 is	labeled	
with	its	distance	from	 .

DISTANCES IN DIGRAPHS
• The	arcs	of	the	digraph	are	labeled	with	a	weight	 .		

• To	determine	the	shortest	path	from	 to	 ,	we	need	
information	about	the	distances	to	intermediate	
vertices.		We	do	this	by	labeling	the	intermediate	
vertices.

• This	takes	one	of	two	forms:

• The	distance	 , between	 and	the	
intermediate	vertex	 .

• The	pair	 , and	the	predecessor	of	 on	this	
path,	 .		The	predecessor	aids	in	
backtracking	to	find	the	path.

TWO TYPES OF ALGORITHMS FOR 
DISTANCES IN DIGRAPHS

• In	label‐setting algorithms,	during	each	
pass	through	the	algorithm,	one	vertex	label	
is	assigned	a	value	which	remains	
unchanged	thereafter.

• In	label‐correcting algorithms,	any	label	
may	be	changed	during	the	process.



8/28/2015

6

DIJKSTRA’S DISTANCE ALGORITHM
Algorithm	2.1.2	Dijkstra’s Distance	Algorithm

Input: A	labeled	digraph	 , with	initial	vertex	 .

Output: The	distance	from	 to	all	other	vertices.

Method: Label	each	vertex	 with	 , ,	which	is	the	
length	of	a	shortest	path	from	 to	 that	has	been	found	at	
that	instant	and	the	predecessor	of	 along	the	path.

1. For	all	 ∈ and	for	all	 set	 ← ∞ and	 ← .

2. While	 ∅;
Find	 ∈ with	minimum	label	 .
←

For	every	 → ,
if	 ∈ and	 then

← and	 .

THEOREM ON DIJKSTRA’S
ALGORITHM

Theorem	2.1.4: If	 is	finite	when	
Algorithm	2.1.2	halts,	then	 , .

PROPERTIES OF DIJKSTRA’S
ALGORITHM

• Dijkstra’s	algorithm	is	label‐setting.
• The	algorithm	has	time	complexity	 .
• To	find	distances	between	any	two	vertices	
in	a	graph,	we	perform	the	algorithm	
starting	at	each	vertex.		Thus,	to	find	all	
distances,	the	algorithm	has	time	
complexity	 .

• Dijkstra’s algorithm	works	on	graphs	with	
arcs	replaced	by	edges.



8/28/2015

7

FAILURE OF DIJKSTRA’S ALGORITHM

• Disjkstra’s algorithm	can	fail	if	we	allow	
negative	edge	weights.

• There	are	algorithms	that	will	find	
distances	in	digraphs	when	the	digraph	
contains	no	cycles	whose	total	length	is	
negative	(called	a	negative	cycle).		These	
algorithms	are	those	of	Ford	and	Floyd.

FORD’S DISTANCE ALGORITHM
Algorithm	2.1.3	Ford’s	Distance	Algorithm

Input: A	digraph	with	(possibly)	negative	are	weights	 ,	but	no	
negative	cycles.

Output: The	distance	from	 to	all	vertices	reachable	from	 .

Method: Label	correcting.

1. ← 0 and	for	every	 set	 ← ∞.

2. While	there	is	an	arc	 → such	that	
set	 ← and	 .

COMMENTS ON FORD’S ALGORITHM

• Theorem	2.1.5: For	a	digraph	 with	no	
negative	cycles,	when	Algorithm	2.1.3	halts,	

, for	every	vertex	 .

• The	time	complexity	of	Ford’s	Algorithm	is	
	 .

• Ford’s	Algorithm	can	only	be	used	on	
digraphs.		In	graphs,	an	edge	 with	a	
negative	label	causes	an	endless	loop	using	
this	edge	to	continually	decrease	the	labels	
on	 and	 .



8/28/2015

8

A DEFINITION NEEDED FOR FLOYD’S 
ALGORITHM

For	 ,	define

,
if	 →

∞ otherwise

Let	 , be	the	length	of	the	shortest	
path	from	 to	 among	all	paths	from	 to	
that	use	only	vertices	from	the	set	
, , … , .

FLOYD’S DISTANCE ALGORITHM
Algorithm	2.1.4	Floyd’s	Distance	Algorithm

Input: A	digraph	 , without	negative	cycles.

Output: The	distances	from	 to	 .

Method: Constant	refinement	of	the	distances	as	the	set	of	excluded	
vertices	decreases.

1. ← 1.

2. For	every	1 , ,
, ← min , , , , .

3. If	 ,	then	stop;
else	 ← 1 and	go	to	step	2.

TIME COMPLEXITY OF FLOYD’S 
ALGORITHM

The	time	complexity	of	Floyd’s	Algorithm	is	
.


