

DEGREE SEQUENCE

Given any graph G, it is easy to find the degree of each vertex. Each graph can be associated with a unique sequence called a degree sequence. The degree sequence is usually listed in nonincreasing sequence of nonnegative integers.

GRAPHICAL DEGREE SEQUENCE

- Given a sequence S, can we determine a \qquad graph with S as its degree sequence?
- Can we determine when a sequence of
\qquad integers represents the degree sequence of a graph?
- A degree sequence is said to be graphical if \qquad it is the degree sequence of some graph.
- A graph G with degree sequence S is called a realization of S.

RESTRICTIONS FOR A GRAPHICAL DEGREE SEQUENCE

- All terms of the sequence must be nonnegative.
- If a degree sequence S has p terms, then no term can be larger than $p-1$.
- The sum of the terms of a degree sequence must be even. That is, there must be an even number of odd terms in the sequence. (Theorem 1.1.1)

ARE REALIZATIONS UNIQUE?

\qquad
If S is a graphical degree sequence and G is a \qquad realization of S, then G is not unique. That is, there can be more than one nonisomorphic \qquad graph that are realizations of S.

WHEN IS A DEGREE SEQUENCE GRAPHICAL

Theorem 1.5.1: A nonincreasing sequence of \qquad nonnegative integers

$$
S: d_{1}, d_{2}, \ldots, d_{p} \quad\left(p \geq 2, d_{1} \geq 0\right)
$$

is graphical if and only if the sequence \qquad
$S_{1}: d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{p}$
is graphical.

EDGE INTERCHANGE

Let G be a graph and let $x_{i}, x_{j}, x_{k}, x_{l}$ be vertices in G and $x_{i} x_{j}$ and $x_{k} x_{l}$ are edges in G. Further suppose x_{i} and x_{k} are not adjacent and neither are x_{j} and x_{l}. The deleting the edges $x_{i} x_{j}$ and $x_{k} x_{l}$ and inserting the edges $x_{i} x_{k}$ and $x_{j} x_{l}$ is called an edge interchange.

AN ALGORITHM TO TEST FOR A GRAPHICAL SEQUENCE

Algorithm 1.5.1 Test for a Graphical Sequence
Input: A sequence S of nonngative integers of length p.
Output: Yes if the sequence is graphical, no otherwise.

1. If there exists and integer d in S such that $d>p-1$, then halt and answer no.
2. If the sequence is all zeros, then halt and answer is yes.
3. If the sequence contains a negative number, then halt and answer no.
4. Reorder the sequence (if necessary) so that it is nonincreasing.
5. Delete the first term d_{1} from the sequence and subtract one from the next d_{1} terms to form a new sequence. Go to step 2.

A THEOREM REALIZATIONS OF GRAPHICAL SEQUENCES

Theorem 1.5.2: Any realization of a graphical \qquad sequence can be obtained from any other realization by a finite number of edge interchanges.
\qquad
\qquad
\qquad
\qquad
\qquad

AN ALTERNATE RESULT FOR TESTING GRAPHICAL SEQUENCES

Theorem 1.5.3: A nondecreasing sequence of nonnegative integers S : $d_{1}, d_{2}, \ldots, d_{p}(p \geq 2)$ is graphical if and only if

$$
\sum_{i=1}^{p} d_{i}
$$

is even and for each integer $k, 1 \leq k \leq p-1$,

$$
\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{p} \min \left\{k, d_{i}\right\}
$$

DEGREE SEQUENCES AND DIGRAPHS

\qquad

A sequence $S:\left(i_{1}, o_{1}\right),\left(i_{2}, o_{2}\right), \ldots,\left(i_{p}, o_{p}\right)$ is called digraphical if it is the degree sequence
\qquad of some digraph.

DIGRAPHICAL SEQUENCES

\qquad
Theorem 1.5.4: A sequence $S:\left(i_{1}, o_{1}\right),\left(i_{2}, o_{2}\right), \ldots,\left(i_{p}, o_{p}\right)$ of ordered pairs of nonnegative integers with $i_{1} \geq i_{2} \geq \cdots \geq i_{p}$ is
\qquad digraphical if and only if $i_{k} \leq p-1$ and $o_{k} \leq p-1$ for each k, and

$$
\sum_{k=1}^{p} i_{k}=\sum_{k=1}^{p} o_{k}
$$

and

$$
\sum_{k=1}^{j} i_{i} \leq \sum_{k=1}^{j} \min \left\{j-1, o_{k}\right\}+\sum_{k=j+1}^{p} \min \left\{j, o_{k}\right\}
$$

for $1 \leq j<p$.

