Section 1.3

Alternate Representations for Graphs

ADJACENCY MATRIX

Let G = (V, E) be a (p, q)-graph. Consider the $p \times p$ matrix $A = [a_{ij}]$, where each row and each column of A corresponds to a distinct vertex of V. Let $a_{ij} = 1$ if vertex v_i is adjacent to vertex v_j in G and $a_{ij} = 0$ otherwise. Note that $a_{ii} = 0$ for each i = 1, 2, ..., p. This matrix is called the **adjacency matrix** of G.

ADJACENCY MATRICES AND WALKS

Theorem 1.3.1: If *A* is the adjacency matrix of a graph *G* with vertices $v_1, v_2, ..., v_p$, then the (i, j)-entry of A^n is the number of $v_i - v_j$ walks of length *n* in *G*.

INCIDENCE MATRIX

For a (p,q) graph G, let the $p \times q$ matrix $M = [i_{xe}]$ be defined as follows: $i_{xe} = 1$ if vertex x is incident to edge e and $i_{xe} = 0$ otherwise. M is called the **incidence matrix** of G. The rows of M correspond to the vertices of G and the columns correspond to the edges of G.

ADJACENCY LIST

Let G = (V, E). If we list each vertex in V along with those vertices that are adjacent to the listed vertex, we create an <u>adjacency list</u>. Nonadjacency is implied by omission from the list.