
\qquad
\qquad
\qquad
\qquad
\qquad

ADJACENCY MATRIX

\qquad
Let $G=(V, E)$ be a (p, q)-graph. Consider the $p \times p$ matrix $A=\left[a_{i} j\right]$, where each row and each column of A corresponds to a distinct vertex of V. Let $a_{i j}=1$ if vertex v_{i} is adjacent to vertex v_{j} in G and $a_{i j}=0$ otherwise. Note that $a_{i i}=0$ for \qquad each $i=1,2, \ldots, p$. This matrix is called the adjacency matrix of G.

ADJACENCY MATRICES AND WALKS

Theorem 1.3.1: If A is the adjacency matrix of a graph G with vertices $v_{1}, v_{2}, \ldots, v_{p}$, then the (i, j)-entry of A^{n} is the number of $v_{i}-v_{j}$ walks of length n in G.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

INCIDENCE MATRIX

\qquad

For a (p, q) graph G, let the $p \times q$ matrix $M=$ [$i_{x e}$] be defined as follows: $i_{x e}=1$ if vertex x is incident to edge e and $i_{x e}=0$ otherwise. M is called the incidence matrix of G. The rows of M correspond to the vertices of G and the columns correspond to the edges of G.

ADJACENCY LIST

Let $G=(V, E)$. If we list each vertex in V along with those vertices that are adjacent to the listed vertex, we create an adjacency list. Nonadjacency is implied by omission from the list.

