Section 1.2

Elementary Properties and Operations

WALKS

- Let x and y be two vertices of a graph G (not necessarily distinct vertices). An x y walk in G is a finite alternating sequence of vertices and edges that begins with vertex x and ends with vertex y and in which each edge in the sequence joins the vertex that precedes it in the sequence to the vertex that follows it in the sequence.
- The number of edges is called the <u>length</u> of the walk.
- An x y walk is **closed** if x = y and **open** otherwise.
- Two walks are equal if the sequences of vertices and edges are identical.
- Usually we will merely list the vertices in walk, noting that the edge between them (at least in a graph or digraph) is implied.

TRAILS AND PATHS

- An x y trail is an x y walk in which no edge is repeated.
- An x y path is an x y walk in which no vertex is repeated, except possibly for the first and last (if the path is closed).

RELATIONSHIP BETWEEN WALKS, TRAILS, AND PATHS

- Every path is a trail, and every trail is a walk. The converse of each of these is false.
- **Theorem 1.1.2**: In a graph *G*, every x y walk contains an x y path.

CIRCUITS AND CYCLES

- A closed trail is called a <u>circuit</u>.
- A closed path is called a <u>cycle</u>. (A cycle is also a circuit with no repeated vertices.)
- The <u>length</u> of a cycle (or circuit) is the number of edges in the cycle or circuit.

SOME SPECIAL GRAPHS

- A graph of order *n* consisting only of a cycle is denoted by *C_n* and is called an <u>*n*-cycle</u>.
- A graph of order *n* consisting only of a path is denoted by *P_n* and is called an *n*-path.
- We allow C₂ as a cycle, but note that it does not occur in graphs. We do <u>not</u> consider C₁ (a single vertex) as a trivial cycle.
- If a graph contains no cycles, it is termed <u>acyclic</u>.
- A graph of order *p* which contains an edge between all pairs of vertices is called a <u>complete graph</u> and is denoted by *K*_p.

CONNECTED GRAPHS

- We say a graph *G* is <u>connected</u> if there exists a path in *G* between any two of its vertices and *G* is <u>disconnected</u> otherwise.
- A <u>component</u> of a graph is maximal connected subgraph.
- NOTE: *A* is a maximal subset with property *P* if whenever *B* is another subset with property *P* and $A \subseteq B$ then A = B.

CONNECTED DIGRAPHS

- A digraph *D* is said to be **strongly connected** (or **strong**) if for each vertex *v* there exists a directed path from *v* to any other vertex.
- A digraph *D* is said to be <u>weakly connected</u> (or <u>weak</u>) if, when we remove the orientation from the arcs of *D*, a connected graph or multigraph remains.
- *D* is **disconnected** if it is not at least weakly connected.

TREES AND FORESTS

- A <u>tree</u> is a connected acyclic graph.
- A <u>forest</u> is an acyclic graph; that is, a graph each of whose components is a tree. (What else would a forest be?)

UNION OF GRAPHS

- The union of two graphs G_1 and G_2 (denoted by $G_1 \cup G_2$) is that graph G with $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2)$.
- The union of *m* isomorphic copies of the graph *G* is denoted by *mG*.

COMPLEMENT OF A GRAPH

The complement of a graph G = (V, E)(denoted by \overline{G}) is the graph where $V(\overline{G}) = V(G)$ and $e \in E(\overline{G})$ if and only if e is not in E(G).

THE JOIN OF TWO GRAPHS

- The join of two graphs *G* and *H* with disjoint vertex sets, denoted *G* + *H*, is the graph consisting of *G* ∪ *H* and all edges between vertices of *G* and *H*.
- If $H = K_1$ where K_1 is the single vertex x, we write the join as G + x.

PARTITE GRAPHS

- The **complete bipartite** graph, denoted by $K_{m,n}$ is the join of \overline{K}_m and \overline{K}_n .
- A graph *G* is **bipartite** if it is possible to partition the vertex set *V* into two sets (called **partite sets**), say *V*₁ and *V*₂, such that each edge of *G* joins a vertex in *V*₁ with a vertex in *V*₂.
- A graph *G* is called <u>*n*-partite</u> if it is possible to partition the vertex set of *G* into *n* sets, such that any edge of *G* joins two vertices in different partite sets.

REMOVING VERTICES FROM A GRAPH

If we remove a set *S* of vertices from a graph *G* along with all the edges of *G* incident to a vertex in *S*, we denote the resulting graph by G - S. If $S = \{x\}$, we denote the resulting graph by G - x.

THE CARTESIAN PRODUCT OF GRAPHS

The <u>cartesian product</u> of graphs G_1 and G_2 , denoted by $G_1 \times G_2$, is defined to be the graph with $V(G_1 \times G_2) = V(G_1) \times V(G_2)$, and two vertices $v = (v_1, v_2)$ and $w = (w_1, w_2)$ are adjacent in the cartesian product whenever $v_1 = w_1$ and v_2 is adjacent to w_2 in G_2 or symmetrically if $v_2 = w_2$ and v_1 is adjacent to w_1 in G_1 .

THE LEXICOGRAPHIC PRODUCT OF TWO GRAPHS

The **lexicographic product** (sometimes called the **composition**) of two graphs G_1 and G_2 , denoted by $G_1[G_2]$, has vertex set $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ and (v_1, v_2) is adjacent to (w_1, w_2) if and only if either v_1 is adjacent to w_1 in G_1 or $v_1 = w_1$ in G_1 and $v_2w_2 \in E(G_2)$.