

WALKS

- Let x and y be two vertices of a graph G (not necessarily distinct vertices). An $x-y$ walk in G is a finite alternating sequence of vertices and edges that begins with vertex x and ends with vertex y and in which each edge in the sequence joins the vertex that precedes it in the sequence to the vertex that follows it in the sequence.
- The number of edges is called the length of the walk.
- An $x-y$ walk is closed if $x=y$ and open otherwise.
- Two walks are equal if the sequences of vertices and edges are identical.
- Usually we will merely list the vertices in walk, noting that the edge between them (at least in a graph or digraph) is implied.

TRAILS AND PATHS

- An $x-y$ trail is an $x-y$ walk in which no
\qquad edge is repeated.
- An $x-y$ path is an $x-y$ walk in which no vertex is repeated, except possibly for the first and last (if the path is closed).

RELATIONSHIP BETWEEN WALKS, TRAILS, AND PATHS

- Every path is a trail, and every trail is a walk. The converse of each of these is false.
- Theorem 1.1.2: In a graph G, every $x-y$ walk contains an $x-y$ path.

CIRCUITS AND CYCLES

- A closed trail is called a circuit.
- A closed path is called a cycle. (A cycle is also a circuit with no repeated vertices.)
- The length of a cycle (or circuit) is the number of edges in the cycle or circuit.

SOME SPECIAL GRAPHS

- A graph of order n consisting only of a cycle is denoted by C_{n} and is called an n-cycle.
- A graph of order n consisting only of a path is denoted by P_{n} and is called an \underline{n}-path.
- We allow C_{2} as a cycle, but note that it does not occur in graphs. We do not consider C_{1} (a single vertex) as a trivial cycle.
- If a graph contains no cycles, it is termed acyclic.
- A graph of order p which contains an edge between all pairs of vertices is called a complete graph and is denoted by K_{p}.

CONNECTED GRAPHS

- We say a graph G is connected if there exists a path in G between any two of its vertices and G is disconnected otherwise.
- A component of a graph is maximal connected subgraph.
- NOTE: A is a maximal subset with property P if whenever B is another subset with property P and $A \subseteq B$ then $A=B$.

CONNECTED DIGRAPHS

- A digraph D is said to be strongly connected (or strong) if for each vertex v there exists a directed path from v to any other vertex.
- A digraph D is said to be weakly connected (or weak) if, when we remove the orientation from the arcs of D, a connected graph or multigraph remains. \qquad
- D is disconnected if it is not at least weakly connected.

TREES AND FORESTS

- A tree is a connected acyclic graph.
- A forest is an acyclic graph; that is, a graph each of whose components is a tree. (What else would a forest be?)

UNION OF GRAPHS

- The union of two graphs G_{1} and G_{2} (denoted by $G_{1} \cup G_{2}$) is that graph G with $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup$ $E\left(G_{2}\right)$.
- The union of m isomorphic copies of the graph G is denoted by $m G$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMPLEMENT OF A GRAPH

\qquad
The complement of a graph $G=(V, E)$ \qquad
(denoted by \bar{G}) is the graph where $V(\bar{G})=$ $V(G)$ and $e \in E(\bar{G})$ if and only if e is not in \qquad $E(G)$.

THE JOIN OF TWO GRAPHS

- The join of two graphs G and H with disjoint \qquad vertex sets, denoted $G+H$, is the graph consisting of $G \cup H$ and all edges between \qquad vertices of G and H.
- If $H=K_{1}$ where K_{1} is the single vertex x, we write the join as $G+x$. \qquad
\qquad
\qquad

PARTITE GRAPHS

- The complete bipartite graph, denoted by $K_{m, n}$ is the join of \bar{K}_{m} and \bar{K}_{n}.
- A graph G is bipartite if it is possible to partition the vertex set V into two sets (called partite sets), say V_{1} and V_{2}, such that each edge of G joins a vertex in V_{1} with a vertex in V_{2}.
- A graph G is called \underline{n}-partite if it is possible to partition the vertex set of G into n sets, such that any edge of G joins two vertices in different partite sets.

REMOVING VERTICES FROM A GRAPH

If we remove a set S of vertices from a graph G along with all the edges of G incident to a vertex in S, we denote the resulting graph by \qquad $G-S$. If $S=\{x\}$, we denote the resulting graph by $G-x$. \qquad
\qquad
\qquad
\qquad

THE CARTESIAN PRODUCT OF GRAPHS

\qquad
The cartesian product of graphs G_{1} and G_{2}, \qquad denoted by $G_{1} \times G_{2}$, is defined to be the graph
\qquad vertices $v=\left(v_{1}, v_{2}\right)$ and $w=\left(w_{1}, w_{2}\right)$ are adjacent in the cartesian product whenever $v_{1}=w_{1}$ and v_{2} is adjacent to w_{2} in G_{2} or symmetrically if $v_{2}=w_{2}$ and v_{1} is adjacent to w_{1} in G_{1}.

THE LEXICOGRAPHIC PRODUCT OF TWO GRAPHS

The lexicographic product (sometimes called the composition) of two graphs G_{1} and G_{2}, denoted by $G_{1}\left[G_{2}\right]$, has vertex set $V\left(G_{1} \times\right.$ $\left.G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ is adjacent to (w_{1}, w_{2}) if and only if either v_{1} is adjacent to w_{1} in G_{1} or $v_{1}=w_{1}$ in G_{1} and $v_{2} w_{2} \in E\left(G_{2}\right)$.

