
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GRAPHS

A graph $G=(V, E)$ is a finite nonempty set V of elements called vertices, together with a set E of two element subsets of V called edges.
In our work, we will draw each vertex as a circle and each edge as a line joining two circles.

TERMINOLOGY

- Given a graph $G=(V, E)$. The number of vertices is called the order of G and the number of edges is called the size of \boldsymbol{G}. We denote these by $|V|$ and $|E|$, respectively. If a graph has order p and size q, we say G is a (p, q) graph.
- Two vertices that are joined by an edge are said to be adjacent, as are two edges that meet at a vertex. If two vertices are not joined by an edge are called nonadjacent or independent. Two edges that do not share a common vertex are said to be independent.

MORE TERMINOLOGY

- The set of all vertices adjacent to a vertex v is called the neighborhood of v and is denoted by $N(v)$.
- An edge between vertices u and v is said to have u (or v) as an end vertex. The edge is said to be incident with u (or v), and v is said to dominate u (also, u dominates v).

DEGREE

- The number of edges incident with a vertex v is called the degree of v and is denoted by $\operatorname{deg} v$ or $\operatorname{deg}_{G} v$.
- The minimum and maximum degree of a vertex in the graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively.
- A graph in which each vertex has degree r is called an r-regular graph (or simply regular).

THE FIRST THEOREM OF GRAPH THEORY

Theorem 1.1.1: Let G be a (p, q) graph and let $V=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Then

$$
\sum_{i=1}^{p} \operatorname{deg} v_{i}=2 q
$$

Consequently, any graph contains an even number of vertices of odd degree.

ISOMORPHIC GRAPHS

In mathematics, isomorphic means the "fundamental equality" of two objects or systems.

We say two graphs G_{1} and G_{2} are isomorphic if there exists a 1-1 and onto function $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that $x y \in E\left(G_{1}\right)$ if and only if $f(x) f(y) \in E\left(G_{2}\right)$ (that is, f preserves adjacency). The function f is called an isomorphism.

SUBGRAPHS

- A subgraph of G is any graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$; we also say G contains H.
- If H is a subgraph of G and $V(H)=V(G)$, we say that H is a spanning subgraph of G.
- Given a subset S of $V(G)$, the subgraph induced by S, denoted $\langle S\rangle$, is the graph with vertex set S and edge set consisting of all of those edges of G incident with two vertices of S.

MULTIGRAPHS AND PSEUDOGRAPHS

- A multigraph is a graph with (possibly) multiple edges between vertices.
\qquad
- A pseudograph allows edges that begin \qquad and end at the same vertex. Such edges are called loops. \qquad
\qquad
\qquad

DIRECTED GRAPHS

- If we think of the edge between two vertices as an ordered pair rather than a set, a natural direction from the first vertex in the pair to the second can be associated with the edge. Such an edge is called an arc.
- Graphs in which each edge has a direction are called directed graphs or digraphs.
- We will denote the arc directed from vertex u to vertex v as $u \rightarrow v$.
- If $u \rightarrow v$ is an arc of a digraph, we say that u dominates v or v is dominated by u. Sometimes we say u is adjacent to v or v is adjacent from u.

DEGREE IN DIRECTED GRAPHS

- The number of arcs directed away from a vertex v is called the outdegree of v, denoted by od v.
- The number of arcs directed into a vertex v is called the indegree of v, denoted by $i d v$.
- In a digraph, we define the degree of the vertex v to be $\operatorname{deg} v=i d v+o d v$.

