This is an outline of the main topics that have been covered since Test II. It is not an exhaustive list. The final exam will consists of topics from the reviews for Test I, Test II, and the list below. Thus, most of the questions on the exams usually come from the topics on the reviews, but this cannot be guaranteed.

Key Definitions and Main Concepts:

- Planar graphs, planar embeddings, maximal planar graphs, $K_{5}, K_{3,3}$, segments, embeddability of a segment in a region, creating \& merging out vertices of degree 2 , shrinking edges, homeomorphisms.
- Matchings, maximum matching, perfect matching, (edge) cover, minimum (edge) cover, matchings in bipartite graphs, stable marriages.
- Vertex covers, independent vertices, legal colorings, chromatic number, the five color problem, the four color problem.

Main Algorithms:

- Pre-processing and the DMP Planarity Algorithm
- Using networks to find a maximum matching and a minimum cover in a bipartite graph
- Weighted Job Assignment Algorithm
- Stable Marriage Algorithm
- Largest First and Smallest Last Approximate Coloring Algorithms
- Brelaz Color-Degree Algorithm

Main Results:

- (a) If G is a connected planar graph, then $r=q+2-p$. (Euler's formula)
(b) If G is a planar graph with k components, then $r=q+k+1-p$. (Gen. Euler's formula)
- Every region of a maximal planar graph is bounded by 3 edges.
- (a) In any maximal planar graph with more than 3 vertices, we have $q=3 p-6$.
(b) In any planar graph with more than 3 vertices, we have $q \leq 3 p-6$.
(c) K_{5} and $K_{3,3}$ are nonplanar.
- G is planar if an only if G has no subgraph which is homeomorphic to K_{5} or $K_{3,3}$. (Kuratowski's Theorem)
- A matching M in a graph G is maximum if and only if there exists no M-augmenting path in G. (Berge's Theorem)
- (a) Let $G=(X \cup Y, E)$ be a bipartite graph. Then X can be matched to a subset of Y if and only if $|N(S)| \geq|S|$ for all subsets S of X. (Hall's Theorem)
(b) If G is a k-regular bipartite graph with $k>0$, then G has a perfect matching. (Corollary to Hall's Theorem)
- If $G=(X \cup Y, E)$ is a bipartite graph, then the maximum number of edges in a matching in G equals the minimum number vertices in a cover for $E(G)$; that is, $\beta_{1}(G)=\alpha(G)$. (König-Egerváry Theorem)
- If G is a critically n-chromatic graph, then $\delta(G) \geq n-1$.
- In any graph $\mathrm{G}, \chi(G) \leq \Delta(G)+1$.
- If G is a connected graph that is neither an odd cycle nor a complete graph, then $\chi(G) \leq \Delta(G)$. (Brooks' Theorem)
- The Five Color Theorem and the Four Color Theorem.

