Homework

MATH 4300
Fall Semester 2019

Chapter 1: Due Friday, September 13
$6,10,12,13,16,19,27,28$
Chapter 2: Due Friday, September 27
$7,10,13,15,25,26,27,28,34$
Chapter 3: Due Friday, October 11
$1,3,6,9,11,17,18,27,28$
Chapter 4: Due Friday, October 18
1, 5, 8, 9

- For \#1, only use Ford and Fulkerson's algorithm and Dinic's algorithm.

Chapter 5: Due Monday, November 4
1, 4, 7, 11, 15, 16, 19

- For \#4, only use Fleury's algorithm and Hierholzer's algorithm.
- For \#7, just do the "if" direction; that is: Let G be a nontrivial connected graph. If every edge of G lies on an odd number of cycles, then G is eulerian. HINT: Show every vertex has even degree. Count the number of cycles a vertex v is contained in.
- For \#19, the hypothesis should be " G is hamiltonian connected and of order at least 4."

Chapter 6: Due Friday, November 15
1, 7, 9, 14, 15, 16 (first graph only)
Chapter 7: Due Friday, November 21
See attached assignment
Chapter 8: Monday, December 9
$4,5,6,7,9,11,12,16,26$ (c)

- For \#12, not only state what the graphs are, but prove they work and are the only ones that work.
- For \#26, be sure to state how you select the vertices.

Homework Problems for Chapter 7

MATH 4300
Due: Friday, November 21, 2019

1. There are positions open in seven different divisions of a major company: advertising (a), business (b), computing (c), design (d), experimentation (e), finance (f), and guest relations (g). Six people are applying for some of these positions, namely:

Alvin (A): a, c, f;
Connie (C): c, f;
Enrique (E): a, c, f;
Beverly (B): a, b, c, d, e, g;
Donald (D): b, c, d, e, f, g;
Frances (F): a, f.

(a) Represent the situation by a bipartite graph.
(b) Is it possible to hire all six applicants for six different positions?
2. Two bipartite graphs G_{1} and G_{2} are shown below, each with partite sets $U=\{v, w, x, y, x\}$ and $W=\{a, b, c, d, e\}$. In each case, can U be matched to W ?

3. Four men and four women apply to a computer dating service. The computer evaluates the unsuitability of each man for each woman as a percentage (see the table below). Find the best possible dates for each woman for this Friday night.

	M_{1}	M_{2}	M_{3}	M_{4}
W_{1}	60	35	30	65
W_{2}	30	10	55	30
W_{3}	40	60	15	35
W_{4}	25	15	40	40

(continued on next page)

4. Find men-optimal and women-optimal sets of stable marriages for the situation below.

men	w_{1}	w_{2}	w_{3}	w_{4}
m_{1}	3	1	2	4
m_{2}	4	1	3	2
m_{3}	3	4	1	2
m_{4}	1	4	2	3

women	w_{1}	w_{2}	w_{3}	w_{4}
m_{1}	1	4	3	2
m_{2}	4	3	2	1
m_{3}	3	1	4	4
m_{4}	2	2	1	3

5. Show that the n-cube $Q_{n}(n \geq 2)$ has a perfect matching.
6. Prove that every tree has at most one perfect matching.
7. Let G be a connected graph of order $2 n$, where n is a positive integer. Prove that if G is $\left\{K_{1,3}\right\}$-free, then G has a perfect matching. HINT: Induct on n and consider a maximal path P in G. Show G minus the first two vertices of P is connected.
