HOMEWORK MATH 4300 Fall Semester 2019

<u>Chapter 1</u>: Due Friday, September 13 6, 10, 12, 13, 16, 19, 27, 28

<u>Chapter 2</u>: Due Friday, September 27 7, 10, 13, 15, 25, 26, 27, 28, 34

<u>Chapter 3</u>: Due Friday, October 11 1, 3, 6, 9, 11, 17, 18, 27, 28

<u>Chapter 4</u>: Due Friday, October 18 1, 5, 8, 9

• For #1, only use Ford and Fulkerson's algorithm and Dinic's algorithm.

<u>Chapter 5</u>: Due Monday, November 4

1, 4, 7, 11, 15, 16, 19

- For #4, only use Fleury's algorithm and Hierholzer's algorithm.
- For #7, just do the "if" direction; that is: Let *G* be a nontrivial connected graph. If every edge of *G* lies on an odd number of cycles, then *G* is eulerian. HINT: Show every vertex has even degree. Count the number of cycles a vertex *v* is contained in.
- For #19, the hypothesis should be "*G* is hamiltonian connected and of order at least 4."

<u>Chapter 6</u>: Due Friday, November 15 1, 7, 9, 14, 15, 16 (first graph only)

<u>Chapter 7</u>: Due Friday, November 21 See attached assignment

Chapter 8: Monday, December 9

4, 5, 6, 7, 9, 11, 12, 16, 26 (c)

- For #12, not only state what the graphs are, but prove they work and are the only ones that work.
- For #26, be sure to state how you select the vertices.

HOMEWORK PROBLEMS FOR CHAPTER 7 MATH 4300 Due: Friday, November 21, 2019

1. There are positions open in seven different divisions of a major company: advertising (a), business (b), computing (c), design (d), experimentation (e), finance (f), and guest relations (g). Six people are applying for some of these positions, namely:

Alvin (A): a, c, f;	Beverly (B): a, b, c, d, e, g;
Connie (C): c, f;	Donald (D): b, c, d, e, f, g;
Enrique (E): a, c, f;	Frances (F): a, f.

- (a) Represent the situation by a bipartite graph.
- (b) Is it possible to hire all six applicants for six different positions?
- 2. Two bipartite graphs G_1 and G_2 are shown below, each with partite sets $U = \{v, w, x, y, x\}$ and $W = \{a, b, c, d, e\}$. In each case, can U be matched to W?

3. Four men and four women apply to a computer dating service. The computer evaluates the unsuitability of each man for each woman as a percentage (see the table below). Find the best possible dates for each woman for this Friday night.

	M_1	M_2	M_3	M_4
W_1	60	35	30	65
W_2	30	10	55	30
W_3	40	60	15	35
W_4	25	15	40	40

(continued on next page)

4. Find men-optimal and women-optimal sets of stable marriages for the situation below.

men	<i>w</i> ₁	<i>W</i> ₂	W ₃	<i>W</i> ₄
m_1	3	1	2	4
m_2	4	1	3	2
m_3	3	4	1	2
m_4	1	4	2	3
women	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	W_4
m_1	1	4	3	2
m_2	4	3	2	1
m_3	3	1	4	4
m_4	2	2	1	3

- 5. Show that the *n*-cube Q_n ($n \ge 2$) has a perfect matching.
- 6. Prove that every tree has at most one perfect matching.
- 7. Let *G* be a connected graph of order 2n, where *n* is a positive integer. Prove that if *G* is $\{K_{1,3}\}$ -free, then *G* has a perfect matching. HINT: Induct on *n* and consider a maximal path *P* in *G*. Show *G* minus the first two vertices of *P* is connected.